L’éphéméride du 25 novembre

Albert Einstein présente sa théorie de la relativité générale le 25 novembre 1915

La relativité générale est une théorie relativiste de la gravitation, c’est-à-dire qu’elle décrit l’influence sur le mouvement des astres de la présence de matière et, plus généralement d’énergie, en tenant compte des principes de la relativité restreinte. La relativité générale englobe et supplante la théorie de la gravitation universelle d’Isaac Newton qui en représente la limite aux petites vitesses (comparées à la vitesse de la lumière) et aux champs gravitationnels faibles.

Elle est principalement l’œuvre d’Albert Einstein, qui l’a élaborée entre 1907 et 1915 et elle est considérée comme sa réalisation majeure. Le 25 novembre 1915, il soumet son manuscrit de la théorie de la relativité générale à la section de mathématique et de physique de l’Académie royale des sciences de Prusse, qui la publie le 2 décembre1.

Les noms de Marcel Grossmann et de David Hilbert lui sont également associés, le premier ayant aidé Einstein à se familiariser avec les outils mathématiques nécessaires à la compréhension de la théorie (la géométrie différentielle), le second ayant franchi conjointement avec Einstein les dernières étapes menant à la finalisation de la théorie après que ce dernier lui en eut présenté les idées générales dans le courant de l’année 1915.

La relativité générale est fondée sur des concepts radicalement différents de ceux de la gravitation newtonienne. Elle énonce notamment que la gravitation n’est pas une force, mais la manifestation de la courbure de l’espace (en fait de l’espace-temps), courbure elle-même produite par la distribution de l’énergie, sous forme de masse ou d’énergie cinétique, qui diffère suivant le référentiel de l’observateurnote 1. Cette théorie relativiste de la gravitation prédit des effets absents de la théorie newtonienne mais vérifiés, comme l’expansion de l’Univers, les ondes gravitationnelles et les trous noirs. Elle ne permet pas de déterminer certaines constantes ou certains aspects de l’univers (notamment son évolution, s’il est fini ou non, etc.) : des observations sont nécessaires pour préciser des paramètres ou faire des choix entre plusieurs possibilités laissées par la théorie.

Aucun des nombreux tests expérimentaux effectués n’a pu la mettre en défautnote 2. Toutefois, des questions restent sans réponse : principalement sur le plan théorique, comment la relativité générale et la physique quantique peuvent être unies pour produire une théorie complète et cohérente de gravité quantiquenote 3 ; et sur le plan des observations astronomiques ou cosmologiques, comment concilier certaines mesures avec les prévisions de la théorie (matière noire, énergie noire).
Vulgarisation

Une analogie permettant une visualisation de la relativité consiste à représenter l’espace-temps en trois dimensions comme une nappe tendue se déformant sous le poids des objets que l’on y met. Si la nappe est bien tendue et sans corps dessus, une bille légère que l’on fait rouler dessus passe en ligne droite. Si on y place une boule lourde au centre, la nappe est déformée et la bille légère ne va plus en ligne droite, et peut même tomber vers la boule lourde donnant l’illusion que la bille légère est attirée par la bille lourde alors que cette attraction est le résultat indirect de la forme de la « nappe » qui s’applique aux masses en tout lieu de celle-ci.

Cette analogie semble supposer une source externe de gravitation (qui donnerait du poids à la boule déformant la nappe), mais il faut plutôt considérer que c’est la gravitation exercée par la boule elle-même qui déforme l’espace-temps alentour en le contractant vers elle, voire en lui transmettant une partie de sa dynamique (vitesse de déplacement, rotation sur elle-même).

L’espace-temps n’est pas à trois dimensions, mais à quatre (trois d’espace et une de temps) et toutes les quatre sont déformées par la présence d’une masse.

Historique
Article détaillé : Histoire de la relativité générale.
Généralités
Nécessité d’une théorie relativiste de la gravitation
La théorie de la gravitation universelle proposée par Newton à la fin du xviie siècle se fonde sur la notion de force par une action à distance, c’est-à-dire le fait que la force exercée par un corps (par exemple le Soleil) sur un autre (la Terre) est déterminée par leur position relative à un instant donné, et ce quelle que soit la distance les séparant, et cette force s’exerçant de manière instantanée. Ce caractère instantané est incompatible avec les principes de la relativité restreinte suivant lesquels aucune information ne peut se propager plus vite que la vitesse de la lumière dans le vide. Ceci amène Einstein dès 1907 à réfléchir à une théorie de la gravitation qui soit compatible avec la relativité restreinte. Le résultat de sa quête est la théorie de la relativité générale.

De la relativité de Galilée à la relativité restreinte
Histoire de la relativité restreinte.
Au xvie siècle, Galilée affirme (en argumentant notamment au sujet du mouvement des navires) que les lois de la physique sont les mêmes dans des référentiels en translation rectiligne et uniforme les uns par rapport aux autres. C’est le principe de relativité galiléenne.

Il utilisera aussi l’additivité des vitesses, dont une conséquence est que n’importe quelle vitesse peut être atteinte, le tout n’étant qu’une question de moyens. Si une balle roule à 10 km/h dans un train (et dans le sens de la marche) qui va lui-même à 100 km/h par rapport au sol, alors la balle va à 110 km/h par rapport au sol.

Dans sa mécanique, Isaac Newton présupposait que les corps étaient dotés d’une vitesse absolue, autrement dit qu’ils étaient soit « réellement » au repos, soit « réellement » en mouvement. Il remarqua aussi que ces vitesses absolues étaient non mesurables autrement que relativement aux vitesses des autres corps (de la même manière, la position d’un corps n’était mesurable que relativement à celle d’un autre corps, etc.). En conséquence, toutes les lois de la mécanique newtonienne devaient opérer à l’identique quel que soit le corps considéré et quel que soit son mouvement.

Cependant, Newton pensait que sa théorie ne pouvait avoir de sens sans l’existence d’un référentiel fixe absolu dans lequel la vitesse de tout corps pourrait être mesurée, même si celui-ci ne pouvait être détecté.

En fait, il est possible en pratique de bâtir une mécanique newtonienne sans cette hypothèse : la théorie résultante (nommée d’ailleurs relativité galiléenne) n’a d’ailleurs pas d’intérêt opérationnel particulier et ne doit pas être confondue avec la relativité d’Einstein qui implique en plus la constance de la vitesse de la lumière dans tous les référentiels et en moins l’hypothèse galiléenne que les vitesses relatives s’additionnent (ces deux postulats sont en effet mutuellement incompatibles).

Au xixe siècle, le physicien écossais James Clerk Maxwell formula un ensemble d’équations, les équations du champ électromagnétique, qui conduisait à prédire la propagation d’ondes électromagnétiques de vitesse {\displaystyle c={\frac {1}{\sqrt {\varepsilon _{0}\mu _{0}}}}}c={\frac {1}{{\sqrt {\varepsilon _{0}\mu _{0}}}}} dans un milieu électrostatique de constante {\displaystyle \varepsilon _{0}}\varepsilon _{0} et magnétostatique de constante {\displaystyle \mu _{0}}\mu _{0}. Cette vitesse phénoménalement élevée, même dans un milieu raréfié comme l’air, avait la même valeur que la vitesse de propagation de la lumière. Il proposa que la lumière ne soit rien d’autre qu’une onde électromagnétique.

Les théories corpusculaires de la lumière semblaient compatibles avec le principe de relativité de Galilée ainsi que la théorie de Maxwell qui penchait en faveur de l’existence d’un éther luminifère envisagé par Huygens. Mesurer la vitesse du système solaire par rapport à ce milieu élastique fut l’objet des expériences d’interférométrie menées par Michelson et Morley. Leurs expériences ont démontré que le vent apparent d’éther était nul, quelle que soit la période de l’année. Supposer que l’éther était constamment accroché à la Terre aurait été une remise en cause trop grave du principe de relativité de Galilée. D’autre part, l’éther présentait l’inconvénient d’être à la fois impalpable et très rigide puisque capable de propager les ondes à une vitesse phénoménale.

Il fallut attendre Albert Einstein en 1905 pour remettre en cause radicalement la notion d’éther, porter au plus haut le principe de relativité de Galilée en postulant que les équations de Maxwell obéissent elles-mêmes à ce principe, et en tirer les conséquences révolutionnaires dans un article resté célèbre : De l’électrodynamique des corps en mouvement.

C’est la naissance de la relativité restreinte :

le principe de relativité de Galilée est conservé ;
l’invariance des équations de Maxwell (par changement de référentiel inertiel) entraîne immédiatement la constance de la vitesse de la lumière {\displaystyle c}c dans tous les référentiels galiléens : l’additivité des vitesses n’est plus vraie et la vitesse de la lumière est inatteignable (sauf pour la lumière, qu’elle soit considérée comme une onde ou comme constituée de photons, particules de masse nulle) ;
les mesures de longueur, d’intervalle de temps, (et de vitesse) ne sont pas les mêmes suivant le référentiel de l’observateur : mesurer la longueur par exemple d’un wagon se déplaçant à une vitesse relativiste (c’est-à-dire proche de celle de la lumière) donne des résultats différents suivant que l’on est dedans ou que l’on est immobile au sol (mais ce n’est pas le cas pour la largeur du wagon, longueur perpendiculaire à la vitesse) ; de même pour la mesure du temps ; le champ électrique devient magnétique et réciproquement. Toutes ces transformations des systèmes de coordonnées du continuum espace-temps et du champ électromagnétique sont formalisées par les transformations de Lorentz (paradoxalement mises au point par Lorentz et Henri Poincaré pour défendre l’existence de l’éther[réf. nécessaire]) ;
la notion de temps absolu disparaît : deux horloges identiques situées dans deux référentiels galiléens différents ne battent pas au même rythme (plus précisément, il n’est pas possible de les garder synchronisées).
En écrivant l’expression de l’énergie cinétique d’un corps de masse {\displaystyle m}m de la manière la plus simple respectant le principe de relativité, Einstein a fait apparaître une énergie au repos : E(0) = m(0).c2 qui sera mesurée par la suite dans les phénomènes de fusion et de fission nucléaires (mais qui se manifeste aussi dans les réactions chimiques ainsi que dans tout échange énergétique, même si ce n’est pas encore directement détectable).

De la relativité restreinte à la relativité générale

La théorie de la relativité restreinte (1905) modifiait les équations utilisées pour comparer les mesures de longueur et de durée faites dans différents référentiels en mouvement les uns par rapport aux autres. Cela eut pour conséquence que la physique ne pouvait plus traiter le temps et l’espace séparément, mais seulement comme un espace à quatre dimensions, appelé l’espace-temps de Minkowski.

En effet, lors de mouvements à des vitesses non négligeables devant {\displaystyle c}c (vitesse de la lumière dans le vide), temps et espace s’altèrent de façon liée, un peu comme deux coordonnées d’un point en géométrie analytique s’altèrent de façon liée lorsqu’on pivote les axes du repère.

Espace plat.
Par exemple, en géométrie euclidienne habituelle la distance {\displaystyle \ \Delta l}\ \Delta l entre deux points de coordonnées {\displaystyle \ (x,y,z)}\ (x,y,z) et {\displaystyle \ (x’,y’,z’)}\ (x’,y’,z’) vérifie {\displaystyle \ (\Delta l)^{2}=(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}}\ (\Delta l)^{2}=(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2} (avec {\displaystyle \ \Delta x=x’-x}\ \Delta x=x’-x, etc.), mais dans l’espace de Minkowski deux points sont repérés par les coordonnées {\displaystyle \ (t,x,y,z)}\ (t,x,y,z) et {\displaystyle \ (t’,x’,y’,z’)}\ (t’,x’,y’,z’), où {\displaystyle \ t}\ t et {\displaystyle \ t’}\ t’ sont les coordonnées de temps, et la « distance », alors notée {\displaystyle \ \Delta s}\ \Delta s, entre ces points vérifienote 4: {\displaystyle \ (\Delta s)^{2}=-(c.\Delta t)^{2}+(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}}\ (\Delta s)^{2}=-(c.\Delta t)^{2}+(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}. Ce calcul donne une « distance » nulle entre deux points du parcours d’un rayon lumineux. Il donne aussi toutes les mesures de longueurs matérielles, des intervalles de temps, des vitesses en relativité restreinte, qui suscitent toujours l’étonnement.

L’espace-temps de Minkowski étant néanmoins de courbure nulle (c’est-à-dire plat) on le qualifie d’espace pseudo euclidien2.

Tel devait être, pour Einstein, l’espace sans gravitation (et sans accélération pour l’observateur). La gravitation newtonienne, se propageant instantanément, n’est pas compatible avec l’existence d’une vitesse limite : Einstein se mit donc en quête d’une nouvelle théorie de la gravitation.

Il admit l’égalité entre la masse gravitationnelle et la masse inertielle comme hypothèse, la fameuse formule {\displaystyle E=mc^{2}}E=mc^{2} autorisant alors à utiliser l’énergie totale d’un corps en lieu et place de sa masse. Ce sera fait grâce à l’outil mathématique nommé tenseur énergie.

Expert en expériences de pensée, il imagina un disque en rotation, depuis Huygens on sait que cela implique qu’il y a une force centrifuge au niveau du périmètre, perçue comme une force gravitationnelle (car la masse gravifique et la masse inerte sont égales par hypothèse). De plus, en voulant rester dans le cadre de la relativité restreinte, il conclut qu’un observateur sur le périmètre et solidaire avec le disque constate une augmentation du périmètre du disque mais pas de son rayon (contraction de la mesure parallèle au mouvement, mais pas de celle qui est perpendiculaire)3,4 : ce n’est pas possible dans un espace plat. Conclusion : la gravitation oblige à utiliser une géométrie non euclidienne.

Einstein imagina un expérimentateur enfermé dans un ascenseur aux parois opaques, subissant une montée à accélération constante : l’ascenseur d’Einstein dans lequel il est impossible pour une personne de savoir s’il y a accélération constante ou bien attraction gravitationnelle constante (car la masse gravifique et la masse inerte sont égales par hypothèse). Conclusion : équivalence locale entre mouvement accéléré et gravitation, ce qui devait se retrouver dans les équations différentielles de la nouvelle théorie. C’est son principe d’équivalence.

Enfin, Einstein voulait trouver une expression des lois de la nature (à l’époque : dynamique, gravitation et électromagnétisme) qui soit inchangée quel que soit le référentiel (accéléré ou galiléen, etc.) : c’est la relativité galiléenne généralisée à tous les repères (on nomme cela la covariance).

La grande difficulté étant de mettre ces principes sous forme mathématique, il en discuta avec David Hilbert qui, d’abord dubitatif, faillit lui ravir la vedette en trouvant la théorie en même temps que lui (voir : Controverse sur la paternité de la relativité).

Géodésiques d’un espace bidimensionnel courbe.
La relativité générale ajouta à la relativité restreinte que la présence de matière pouvait déformer localement l’espace-temps lui-même (et non pas seulement les trajectoires), de telle manière que des trajectoires dites géodésiques — c’est-à-dire intuitivement de longueur minimale — à travers l’espace-temps ont des propriétés de courbure dans l’espace et le temps. Le calcul de la « distance » dans cet espace-temps courbe est plus compliqué qu’en relativité restreinte, en fait la formule de la « distance » est créée par la formule de la courbure, et vice-versa.

Les géodésiques sont les trajectoires vérifiant le principe de moindre action, suivies par les particules test (c’est-à-dire dont l’influence sur le champ de gravitation dans lequel elles se déplacent est négligeable, ce qui est le cas par exemple d’un satellite artificiel autour de la Terre ou bien d’un photon passant à côté du Soleil mais pas d’une étoile orbitant autour d’une autre dans un système binaire oscillant rapidement), elles ont donc une importance pratique majeure pour la compréhension intuitive d’un espace courbe.